首页> 外文OA文献 >A Multi-resolution Gaussian process model for the analysis of large spatial data sets
【2h】

A Multi-resolution Gaussian process model for the analysis of large spatial data sets

机译:一种用于大空间数据集分析的多分辨率高斯过程模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multi-resolution model is developed to predict two-dimensional spatial fields based on irregularly spaced observations. The radial basis functions at each level of resolution are constructed using a Wendland compactly supported correlation function with the nodes arranged on a rectangular grid. The grid at each finer level increases by a factor of two and the basis functions are scaled to have a constant overlap. The coefficients associated with the basis functions at each level of resolution are distributed according to a Gaussian Markov random field (GMRF) and take advantage of the fact that the basis is organized as a lattice. Several numerical examples and analytical results establish that this scheme gives a good approximation to standard covariance functions such as the Matérn and also has flexibility to fit more complicated shapes. The other important feature of this model is that it can be applied to statistical inference for large spatial datasets because key matrices in the computations are sparse. The computational efficiency applies to both the evaluation of the likelihood and spatial predictions.
机译:开发了一种多分辨率模型,以基于不规则间隔的观测结果预测二维空间场。使用Wendland紧密支持的相关函数构造每个分辨率级别的径向基函数,并将节点排列在矩形网格上。每个更精细级别的网格将增加两倍,并且将基本函数缩放为具有恒定的重叠。在每个分辨率级别上,与基函数相关的系数根据高斯马尔可夫随机场(GMRF)进行分配,并利用了将基组织为晶格这一事实。几个数值示例和分析结果表明,该方案可以很好地逼近标准协方差函数(例如Matérn),并且具有适应更复杂形状的灵活性。该模型的另一个重要特征是,由于计算中的关键矩阵稀疏,因此可以将其应用于大型空间数据集的统计推断。计算效率既适用于似然评估,也适用于空间预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号